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ABSTRACT 

Traditional methods  for carrier synchronization  of digital 
signals are obtained  from  approximations  made  to a closed 
loop  structure motivated by the maximum a posteriori 
(MAP) estimation of carrier phase. Inherent in all of these 
loops is the fact that their input data is assumed to be an 
equiprobable (balanced) independent  identically  dismbuted 
(i.i.d.) binary  sequence,  and the MAP estimation loop from 
which these various structures are derived is predicated on 
this  fact. By reducing the  amount  of  randomness 
(information)  in  the  data  that is input to the  carrier 
synchronizer  (hence the term information-reduced  currier 
synchronization), yet  maintaining  its i.i.d (but  not 
necessarily balanced)  property  and also its independence 
of  the additive noise (both of which  can be satisfied for 
coded  modulations),  and then suitably  modifying  the 
synchronizer  structure  in  accordance  with  this  data 
reduction,  one  can  obtain a significant  loop  SNR 
improvement relative to what is achievable with the above- 
mentioned  structures.  Although the paper  focusses on 
binary modulation,  the  concepts  and  results are easily 
extended to higher order M-PSK  modulations  with M 24.  

INTRODUCTION 

Optimum  closed  loop structures for tracking the phase  of 
BPSK signals as well as unmodulated carriers have  been 
derived  in  the past based  on  maximum-a-posteriori (MAP) 
estimation criteria [ 1-31. These structures have been shown 
to take the  form  of  feedback  loops  which  attempt to null 
the difference between  the  true  input  phase and its estimate 
produced by  an oscillator in the  loop.  It  has  been  customary 
in the past  to  distinguish  between  unmodulated  and 
modulated carriers before  deriving  the  optimum closed loop 
structures, the  former leading to a phase-locked  loop  (PLL) 
and the latter  leading  to  an inphase-quadrature (I-Q) Costas- 
type loop  with a hyperbolic  tangent nonlinearity in its 
inphase  arm. 

It is  well  known  that  PLLs attain a phase error variance 
that, in  the limit of large loop SNR, varies as the inverse of 
this  loop SNR whereas I-Q loops suffer an additional 
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degradation  because  of  the inherent multiplication  required 
to produce an error  signal in  the I-Q structure.  This 
multiplication  of  the I and Q signals results in the  generation 
of signal and  noise cross-products which leads to a loop 
SNR penalty  (Le.. multiplication of  the  loop  SNR by a 
factor less than unity) generically referred to as  squaring 
loss. At low  symbol SNR,’ the squaring loss degradation 
associated with I-Q loops  can be severe often prohibiting 
the  ability  to  track.  This  suggests  that  substantial 
improvements may  be possible if somehow  one  could 
convert  the  received  modulated  carrier  to a pure 
(unmodulated)  tone before applying it to  the  phase-tracking 
loop  since this would  then  allow  use  of a PLL  which, as 
mentioned  above,  has  no associated squaring loss penalty. 

In principle, an uncoded  BPSK signal could  indeed  be 
converted  to a pure  tone  if  the  data  sequence  were 
completely  known  simply  by  multiplying the BPSK signal 
by the data waveform. Short of  complete  knowledge  of 
the data waveform  and  in the presence  of noise, the  next 
best attempt at arriving at a “pure” input tone  would  be to 
feed  back decisions (estimates) made  on the data symbols. 
Refemng to Fig. 1, the above statements  can be put into 
mathematical  terms as follows. Denoting the received 
signal  plus noise waveform  by x(t;ak,6) where uk is the 
kth data symbol taking on  values It1 with  equal probability 
and 8 is the unknown canier phase to be estimated, it 
follows that if  a perfect estimate, c i k ,  of the data were 
available, so that cik = uk,  then the product  of ak and iik 
would  always be unity  and the data-modulation  would in 
effect be  removed  from the  signal input to the carrier 
synchronizer. Implicit in  the previous statement is the 
assumption  that  accurate  symbol  synchronization  has 
already  been established and that data estimation delays 
have  been  accounted  for  by  means  of  the signal delay A 
prior to the multiplication operation. If perfect symbol 
estimates are  not available, the product  of at and iik forms 
an error sequence ek ‘akcik with statistics based  on the 
probability p assigned  to the error event it # ak. Thus. 
ignoring  for  the  moment  the effect of this data estimate 

We use the term “symbol”  rather than ”bit” to include the case 
of coded data which will be  our main focus of interest. 
Furthermore. it should  be  noted that assumption of low synbol 
SNR  docs  not  neccssarily  invalidate  the  assumption of high 
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Fig. I .  Receiver with information-reduced carrier phase estimation. 

multiplication on  the  noise  component  of x(t;"k,@) (which 
as we shall see shortly is  an important consideration and 
is, in fact.  what  prevents  this  scheme  from  being successful 
for uncoded modulations), the input to the loop has  been 
transformed into y(r;ek.O) whose signal component now 
represents the carrier modulated by the error  sequence 
instead  of the original data sequence. Assuming that  the 
data estimates are i.i.d. (as would be the case  for uncoded 
data), then  the error sequence { e k }  is an unbalanced ii.d 
sequence with  the data estimate error probabability p now 
ak0 representing the  probability  that ek takes on a value 
equal to minus one. Hence a value  of p = S results in a 
balanced i.i.d. sequence  and  thus  the feedback provides no 
advantage whereas a reduction in the  value of  p to p = 0 
would  result in  an all  ones  input  sequence,  i.e., an 
unmodulated  carrier.  The  degree  to  which p can be reduced 
from its nominal  value of p = .5 depends on the nature of 
the data estimator (detector) which for uncoded data would 
be a matched filter followed by a hard decision threshold 
device. 

If  it  were  not for the effect of the decision feedback on 
the  noise component of  the  received signal which is input 
to the loop, then modification of the loop  structure in 
accordance with MAP theory  based  on  the changed data 
sequence  statistics  discussed  above  should  yield an 
improvement in performance. Again  this  would  occur 
because any unbalance (tilt) in the received data statistics, 
i.e.. p other than 0.5, brings  the signal component of  the 
received  signal  closer to a "pure" tone  which  should 
intuitively allow  phase  estimation with a  smaller squaring 
loss. Unfortunately, for bit-by-bit detection of  uncoded 
BPSK with a matched filter, each data decision that is 
outputted from  the  hard  decision  threshold device is  based 
on  the  same  symbol  interval  of  noise as the corresponding 
interval of noise in the  received signal that gets multiplied 
by this decision. Stated another way  the error  statistic 
ek Gakik (which of course contains the decision i t )  
corresponding to  the kth transmission interval is totally 
correlated with the  noise  component  of .r(f;ak,e) during 
that same time interval and thus the assumption of a 
modified  data  sequence i n p u t  to the loop  which  is 
independent of the  additive  noise  is  invalid.  Indeed  for  the 
configuration of Fig. I when implemented for uncoded 

BPSK,' because of  the  above-mentioned  data  sequence  and 
noise correlation the squaring loss performance  cannot be 
improved  relative to the  well-known  conventional - 
techniques. This has been  formally  proved in [7]. 

Suppose now that  the BPSK symbols  correspond to 
encoded  data  and the decisions result  from,  say,  a 
convolutional (conventional or iterative) decoder. Then  a 
memoryless data model for the error sequence at the  phase 
tracking loop input is strictly speaking  inappropriate.  If 
the joint  statistics of  the input symbols  were  known as well 
as the actual decisions  statistics, then,  in principle, the 
structure of  the W e s t i m a t o r  could be derived.  However, 
the mathematics would become intractable and  thus it 
behooves us to find a way to justify the  i.i.d.  and noise 
independence assumptions  for the error sequence. One 
simple  way  of  validating the i.i.d assumption is  to 
preprocess (e.g., interleave) the data input to the carrier 
synchronizer  and  at  the  same time perform  the  same 
preprocessing of the data being fed  back  from the decoder 
in such a way as to randomize the error sequence. We point 
out that such processing of  the data and  data  feedback  used 
as inputs to the canier synchronizer does not affect the 
actual data  decoding  process  since  this is performed 
external to the camer synchronization  operation. To 
validate the assumption that  the  components  of  the error 
sequence are approximately independent  of  the additive 
noise in the corresponding  transmission intervals (a 
situation that as mentioned above is not possible for the 
uncoded data case), we argue as follows. In a coded  system, 
the decisions on the data information  bits (or equivalently 
on  the encoded data symbols as is  needed  for  the carrier 
synchronizer) are made  based on  an observation  interval 
of  the  received  signal  much  longer  than a single 
transmission interval. For example, in a convolutionally 
encoded data system, the output decision  of  the maximum- 
likelihood (ML) decoder,  e.g, the Viterbi decoder. is 
obtained from  the  first bit of  the  current ML sequence 
whose  length corresponds to a number of code  constraint 
lengths sufficient to have  all  surviving  paths  converge  at 

Note that in this case the delay J bccomcs equal to the bit 
time T. 



their origin.' Thus. the  noise  that determines this M L  
sequence  decision  and  hence  the  decision  on  the  tirsr bit 
(or equivalently  the tirst cncodcd symbols) in this  sequence 
is  virtually  uncorrelatcd with the  noise in the same first 
transmission  interval. 

Assuming  the  above  unbalanced  i.i.d  models,  the  next 
section  presents  the  open  loop MAP estimator of carrier 
phase  and  the closed loop  carrier synchronizer motivated 
by this approach. 

MAP ESTIMATION OF CARRIER PHASE FOR 
BPSK WITH UNBALANCED DATA 

Consider  the  estimation  of  carrier  phase for uncoded BPSK 
signals with  unbalanced data in  the  presence  of additive 
white Gaussian noise  (AWGN). To begin,  the received 
signal is of  the  form 

s(t;6) = &Fm(t)sin(o,t + O(t))  (1 )  

while  the additive noise  has  the  narrowband  representation 

n( t )  = &[Nc(t)cos(oct + e(t)) - N,(t)sin(o,t + ect))] (2) 

The carrier  in (1 )  has  power S, radian  frequency o,, slowly 
varying  phase O(t)  and is modulated by a random  pulse 
train 

m ( f )  = x akp(f - kT) 
00 

(3) k=- 

where At) is a unit power rectangular  pulse of duration T 
sec and { a k }  is a binary (21) equiprobable data sequence 
assumed to be i.i.d. The noise  process in (2) is modeled  in 
terns of  a  pair  of  independent,  low-pass  Gaussian  processes 
Nc(t) ,  N,(t) ,  each with  single-sided  power  spectral  density 
(PSD) No Watts/Hertz  and  bandwidth B < CU, / 2a. 

In accordance  with  Fig. 1. the  received  signal  plus  noise. 
x(t;ak,6), is delayed by an  amount A and  then  multiplied 
by  the data estimator waveform 

00 

h(t-A)= xci,p(t-kT-A) (4) 
k = - w  

where { G k }  denotes the sequence of  binary ( f l )  data 
estimates. Assuming, as previously discussed, that  this 
sequence of estimates is i.i.d. and has  the probability 
statistics 

' It is  envisioned  for  such  applications  that  the  symbol  decision 
feedback  could  be  obtained by storing  the  encoded  symbol 
history of the  survivor  paths  associated with the  decoding 
algorithm  rather than the input history  normally  associated with 
these  paths. This soft symbol  decision  information  would then 
be fed  back  synonymous with the  time at which  one  would 
normally start making bit decisions with the  decoder in which 
case  the  delay A in Fig. I would be set  equal  to  the  decoder 
delay. 

Pr{G, t ( 1 , )  = p ,  Pr{ti, = ilk} = I - p ( 5 )  

where p represents the error probability of the data 
estimator.  then  the  result o f  the  product o f  .r(r - A )  and 
A ( r  - A )  can be modeled as5 

. v ( r )  = $Ee(r)sin(o,t + o(r)) + ~ ( t )  ( 6 )  

where 
00 

e ( t )  = Zekp(r  - k T )  (7) 

is a modified data modulation  that  reflects  the  errors in the 
detection of the  input data sequence,  i.e., { e k }  is a binary 
( + I )  i.i.d.  sequence  with  probability  statistics6 

k = - w  

Pr{ek =-I} = p. R{ek  = 1) = 1 - p (8) 

and N ( t ) e h ( t ) n ( t )  is an additive noise process  that is 
Gaussian  in each T-sec  interval  with  identical  statistics to 
n(t)  and, based on the  arguments  previously  given  for the 
coded application, is independent of the  data. 

The combined signal  plus  noise  in (6) is observed for 
K data  intervals, i.e., over  the  interval 0 S t l  KT. 
Assuming  that  the  carrier  phase O ( t )  remains  constant over 
this  observation  interval,  then  based  on  this  observation 
and  knowledge  of S. p(t) ,  and w,, the MAP estimate  of 
phase is that value 6" that maximizes  the  conditional 
probability  density  function p(*(t)) or equivalently 
p(y(t>lO) since 6(t) = 6  is assumed to  be  uniformly 
distributed. Since 6 M A p  is the value  of 6 that  maximizes 
the log likelihood  function,  an  equivalent statement is that 
GMAP is the  value  of 8 at which  the derivative of  the 
likelihood  function  has  zero  value  (and  the  second 
derivative  is negative). For  estimates 8 of 8 in the 
neighborhood  of 6" this  derivative  will be'positive or 
negative in accordance  with  the  sign  of 6 - G M P  and  thus 
it  can  be  used as an  error  signal  in a closed  loop 
synchronizer to steer the loop in  the  direction of a  locked 
condition corresponding to 8 = 6 M A p .  Using the  well- 
known M A P  estimation  approach, it is straightforward  to 
show that for the case of  unbalanced  data,  the  derivative  of 
the  log  likelihood  function is given by [4.7] 

" 

In what  follows  we  ignore  the  delay A (i.e.,  set it equal  to  zero) 
since  its  value  has  no  bearing  on  the  derivation  that  follows. 
Also, for  simplicity of notation,  we  herein  use y ( t )  instead of 
y ( t ; e k . 6 ) .  
In reality.  the  error  probability  of  the  decisions  being  fed  back 
will be dependent on the tracking  performance of the  carrier 
synchronization  loop  itself  since  indeed  the  phase ofthe inphase 
dcmodulation  reference signal (the output  of  the  phase  tracking 
loop in Fig. 1 )  is an input to  the  data  detector. We ignore  this 
effect  since for large loop SNR. which is the  case  of  interest. 
this is a second  ordcr  et'fcct. 



where 

and f p ( . r )  is the  zero  memory  nonlinearity 

The closed loop carrier  synchronizer  motivated by the 
above MAP estimation  procedure  is  illustrated in Fig. 2.7 
We herein  refer to this  loop as the MAP Estimation Loop 
f o r  BPSK with unbalanced data. 

In the next  section,  we  specify the  tracking  performance 
of this loop in terms of its mean-squared  phase  error. 

TRACKING  PERFORMANCE OF THE MAP 
ESTIMATION LOOP FOR BPSK WITH 
UNBALANCED DATA 

The analysis of the  tracking  performance  (in  terms of 
variance of the  phase  error) of the loop in Fig. 2 parallels 
the  approach  taken in [ I] for a similar  loop  with a hyperbolic 
tangent  nonlinearity. We note,  however, that  there  are some 
significant differences  between  the  two analyses since 
several of the steps carried  out  in [ l ]  depend  upon  the 
nonlinearity (e.g., hyperbolic  tangent)  being an  odd  function 
of its argument  which is not  the case for  the nonlinearity 
f p ( X >  (except  when p=1/2  in which  case 
f p ( X )  = tanh X ) .  The  complete  details of the analysis and 
these  differences are presented  in [7] and are omitted  here 
due  to  lack of space.  The  results are as follows. 

In Fig. 2, the  nonlinearity is shown as fib) since in an actual 
implementation 5 is an estimate of the  true value of p as 
determined  from  measurements  made  on  the  receiver. 
Furthermore. in reality. 5 depends  on  the  loop phase error 
and the  detection SNR, Rd. These  dependencies are discussed 
in [7]. For the discussion here, we set j = p .  

where pz!s/ N0BL is the loop SNR of an cquivalent PLL 
and analogous to conventional Costs loop  terminology, 
S L  is the  "squaring loss" which  reflects the  penalty  paid 
due  to  the  signal and noise  cross-products in the loop error 
signal and  is given by 

X 2 
[ ( l - p V & R d - ~ X )  -pfp( -2Rd t a x , " ]  

S L  = ( I - p ) $ ( 2 R d - ~ X ) " + p f ~ ( - 2 R d + ~ X )  x (13) ~ 

where X is a (0.1) Gaussian  random  variable  and  the  overbar 
denotes  expectation  Note that  for p = 1 / 2 ,  (13) reduces 
to 

which is in agreement  with  Eq. ( 1  8) of [2]. Although  the 
statistical  averages required in ( 1  3)  cannot be performed 
analytically, they are easily  evaluated  numerically  using 
Gauss-Quadrature  techniques. 

It is of interest  to  examine  the  behavior of the  data- 
reduced  carrier  synchronization  scheme  at low S N R  (small 
symbol energy-to-noise  ratio)  since this is the  region  where 
the  squaring loss associated  with  conventional  carrier 
synchronization  schemes is large and  thus limits their 
performance.  Specifically,  the  limiting  value of (13) for 
~d + o will also be of interest  later  on.  in  relation to a 
more  traditional decision  feedback  scheme  derived fiom 
ML considerations  applied to a received  signal  with a 
correlated  data  sequence.  Approximating  the  in-phase arm 
nonlinearity of ( 1  1) by its  expression for  small  values of 
its argument,  namely, 

f p ( - r ) Z l - 2 p + 4 p ( l - p ) X  (15) 

I ACCUMULATOR 

t 
Fig. 2. Information-reduced cmier synchronization  loop. 



then. i t  is straightforward t o  show f r o m  13)  that for thc 
information-reduced  schcmc of  Fig. 2 

Also since SL is a monotonically  increasing  function  of 
Rd , then ( 16) represents a lower bound on the  performancc 
of the  synchronizer  at  any SNR. 

Fig. 3 is a plot  of  the  squaring loss as determined  from 
the  exact  expression of (13) versus Rd with p as a 
parameter.  While  we recognize that  for  any given form of 
data  detector p will  be  a  function of R d ,  we  have  chosen 
to  maintain p as a  constant  parameter  in  this  figure.  The 
reason  for  this is that  the results  presented  there  can  then 
be independent  of the specific form of data  detector  or 
equivalently the specific form of error  correction coding 
employed,  provided  that  the  conditions  for an i.i.d and noise 
dependent  error  sequence are still met.  For  any given  coding 
application,  only  a single point  on  each  curve ofconstant 
p would be applicable,  namely,  the one corresponding to 
the given error  rate  behavior of the  data  detector  (decoder) 
and  thus  the  performance  for  that  particular  application 
would be illustrated  by  a single curve  passing  through this 
series of points. With this  interpretation  in  mind, we  note 
that  the  curve labelled p = .5 corresponds to the  in-phase 
arm nonlinearity f,<x> = tanh X and as such  agrees  with 
the  squaring loss behavior  performance of the M A P  carrier 
synchronization  structure of uncoded BPSK modulation. 
For  purpose of  illustration  only,  we also include in Fig. 3 
curves  corresponding to the  conventional Costas loop and 
polarity-type Costas loop for uncoded BPSK. Finally,  we 
note  that for improvement to take place  in the  carrier 

- - -e- - - POLARITY-TYPE 
COSTAS LOOP 
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Fig. 3. Squaring-loss  performance of an information- 
reduced  carrier  synchronization loop; perfect  knowledge 
of p .  

synchronmr. the data cstilnator is not  rcqulrcd t o  opcratc 
with symbol error probabilities as small ;is thosc  typicully 
nocclcd for reliable  communication. In tact, a  value o f  
p = . I ,  which  might bc unacceptable to r  tclcmctry 
applications, can  result in dramatic  improvemcnt in carrier 
synchronization  performance when  used in the  manner 
illustrated in Fig. I .  

RELATION TO OTHER STRUCTURES 
MOTIVATED BY ML  CONSIDERATIONS 

Suppose that  at  the  outset we had  postulated  a  received 
signal y(r) consisting  of the  sum of AWGN and a random - 
binary  data  source  with  dependent  data symbols,  such as 
that  outputted  from  a  convolutional  encoder,  biphase 
modulated  on  a  carrier.  Based  on  an  observation  of y ( t )  
over K symbols and  the assumption of a  uniformly 
distributed  unknown  carrier phase, 8, the MAP estimate 
of this phase is still that value iMAP that maximizes 
p(y(r>le). In  computing p(y(t>l8) for  the i.i.d. data  source 
case as in  the  section  on MAP estimation,  we  first  obtained 
the  conditional  probability p(y(t>le,a) where a is the 
vector of K transmitted  data symbols and  then  averaged 
over the  probability  density  function (p.d.f.) of a .  For  an 
i.i.d. data  source as assumed  in  that section (there  the  data 
source  actually  corresponds to the  error sequence), this 
averaging  over the  data  sequence, i.e., computing  the 
average-likelihood  ratio (ALR)  , can be performed symbol- 
by-symbol  which  for  binary  data  results  in an  LR in the 
form of a  K-fold  product of hyperbolic  cosine  functions. 
Taking  the  natural  logarithm of this LR (which turns the 
product into a  sum of “ln  cosh” functions) and  then 
differentiating  with  respect to the  unknown  parameter to 
find  its maximum results  in the well-known MAP 
estimation  loop with  hyperbolic  tangent  nonlinearity 
(derivative of the  “ln cosh’ function) in its inphase arm 
and  K-symbol  accumulator  following the I-Q multiplier. 

When  the  data  source is not i.i.d. then  computation of 
the  ALR by averaging p(y(r>le.a) over a cannot  be 
performed  symbol-by-symbol.  Instead the  average  must 
be  computed  over all 2 K  possible  data  sequences  which 
for large K results in an estimation  structure  with  high 
complexity. Furthermore, since this  average  cannot  be 
written in the  form of  a  K-fold  product,  then  the  advantage 
obtained by  taking  the  natural  logarithm of the ALR before 
differentiating is  now lost [5]. Another possibility for 
obtaining a carrier  phase  estimator is to first maximize 
pfy(r)l8,a) Over a resulting in the ML estimate  of  the 
data  sequence  and  then  substitute  this  estimate  into 
p(y(t@.a) before  maximizing  over the carrier  phase 8 .  
Although  this murburnt-likelihood ratio (MU) approach 
is suboptimum (since it does not  result in maximization Of 



the [rue LK p ( J ) ( r ) ( 8 )  with respect t o  t) ). i t  ncvcrthclcss 
often  produces an estimator  whose  pcrform;incc is 
conipar;1bIe  with  that obtained from  the  ALR  :lpproach. A 
closed loop structure resulting from  the  MLR  approach t o  
carrier phase estimation is suggested in [S] and repcatcd 
here in Fig. 4 for clarity of  this presentation. We observe 
that, i n  principle. the structure  requires a maximum- 
likelihood sequence estimator (MLSE) in i t s  inphase arm 
prior to multiplication by the appropriate quadrature arm 
signal. An approximation  of  this vector decision feedback 
type of  implementation  which leads to a simplification in 
structure can be obtained in, for  example, a convolutionally 
coded  system wherein  the  MLSE is implemented as a 
Viterbi  decoder that outputs symbol-by-symbol decisions 
after a suitable delay.  Using these decisions to multiply 
the corresponding  delayed  (by the amount  of  the  decoder 
delay) symbol-by-symbol  outputs of the quadrature arm, 

one obtains a  structure that resembles a polarity-type I-Q 
Costas  loop  wherein the matched filterhard limiter data 
detector combination  in the inphase arm is replaced by a 
Viterbi decoder. An analysis of the tracking performance 
of  such a structure is straightforward and  follows  along 
the lines of  that for an  uncoded  BPSK  I-Q loop with  hard- 
limited inphase arm whose  squaring loss is given by 

sL = erf2& (17) 

Suffice it to say that the analogous result to (17) for the 
above-mentioned  I-Q structure with a Viterbi decoder in 
its inphase arm is easily shown to be 

s, = (1 - 2 4  2 (18) 

where p is the symbol error probability performance  of 
the Viterbi decoder  under ideal conditions, Le., with  zero 
phase  error.  Comparing (1  8) with (1  6) and  keeping  in  mind 
the monotonically increasing nature of SL with Rd, we 
conclude that for any Rd 2 0 ,  the information-reduced 
carrier synchronizer performs at least as well as (and often 
much  better  than)  the  scheme  motivated by MLR 
considerations.  The  advantage  of  the  MLR  scheme, 
however, is that it can  be  implemented  without the receiver 

hirving spccil‘ic knowledge of p ,  Wc: h;lstcn t o  . 1 1 t t t  l}1;1[ 

schcmcs involving codcd decision-fccdback o t  ~ I I I C  form 
o r  another sutfcr from the  potential  instability hrotI!:Ilt about 
by  the decoder delay  introduced  into the loop. 
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Fig. 4. Closed-loop carrier synchronizer  motivated by MLR  theory for codcd BPSK.  where 
corresponding to data vector a,. 
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